

Flujo laminar

Objetivo.

Visualizar experimentalmente el fenómeno del flujo laminar de un fluido, en este caso agua.

Introducción.

Una de las formas de predecir el comportamiento de un fluido, es estimar el valor del número de Reynolds (Re). Valores muy pequeños de Re indican movimiento lento y viscoso, donde los efectos de la inercia son despreciables. Valores moderados de Re corresponden a un *flujo laminar*, cuando el fluido es de forma ordenada, caracterizado por variaciones suaves y sin entremezclarse. Valores altos de Re suelen estar asociados al flujo turbulento, caracterizado por fuertes fluctuaciones aleatorias superpuestas a un flujo que también experimenta variaciones suaves con el tiempo.

El numero de Reynolds se define como:

$$Re = \frac{Fuerzas\ inerciales}{Fuerzas\ vis\cos as} = \frac{\rho DV}{\mu}$$
 (0.1)

Donde ρ y μ son la densidad y viscosidad del fluido, D es el diámetro de la tubería por el cual atraviesa el fluido a una velocidad V.

Este número es adimensional y proporciona una indicación de la pérdida de energía causada por efectos viscosos. Cuando las fuerzas viscosas tienen un efecto dominante en la pérdida de energía , entonces Re<2300 el flujo será laminar. Si el número de Reynolds se encuentra en el intervalo de 2300≤Re<4000, el flujo será de transición. Un numero de Reynolds mayor que 4000 indican que las fuerzas viscosas influyen poco en la pérdida de energía y el flujo es turbulento.

Material.

- 1 globo
- 1 aguja.
- Agua
- Cinta masking.

Procedimiento.

- 1. Llene el globo con agua y que adopte una forma uniforme.
- 2. Corte tiras de cinta masking y colóquelos en una parte del globo con agua, de tal manera que se forme pequeño cuadrado de 1 cm en medio, tal como se muestra en la Figura 1.
- 3. Con la aguja pinche el globo justo en el pequeño cuadro formado por las tiras de masking pegadas en el globo.

4. Al pinchar el globo, el agujero en la goma no se extenderá gracias a la cinta masking colocada previamente y la fuerza elástica del globo producirá que la salida del agua sea a una baja velocidad en un principio, formando un flujo laminar.

Figura 1.

5. Si el agujero en el globo se extiende por su superficie, intente con un nuevo globo y repita los pasos del 1 al 3. Esta vez asegúrese de que las tiras de cinta masking queden bien adheridas al globo.

Preguntas.

- 1. ¿ Por qué después de una cierta región , el chorro de agua que sale del agujero del globo deja de ser un flujo laminar?
- 2. Si cambiamos el globo por algún otro contenedor y a este le hacemos el mismo agujero, ¿cree que el chorro de agua que salga también sea un flujo laminar? ¿Por qué?